6-6: Use Proportionality Theorems

Name:

WORKSHEET

Triangle Proportionality Theorem:

If a line parallel to one side of a triangle intersects the other two sides,

then it divides the two sides *proportionally*.

If $\overline{TU} // \overline{QS}$, then ____ = ___.

Converse of the Triangle Proportionality Theorem:

If a line divides two sides of a triangle proportionally, then it is parallel to the *third side*.

Example 1:

a.) Find the length of \overline{QU}

b.) Find the length of \overline{KL}

Example 2:

a.) Determine whether $\overline{QT} // \overline{RS}$.

b.) Given AB = 31 mm, BC = 19 mm, CD = 27 mm, and DE = 23 mm. Determine whether $\overline{BD} / / \overline{AE}$.

If three parallel lines intersect two transversals, then they divide the transversals *proportionally*.

$$\frac{UW}{WY} = ---$$

If a ray bisects an angle of a triangle, then it divides th side into segments whose lengths are <u>proportional</u> to the lengths of the other two sides.

$$\frac{AD}{BD} = ---$$

Example 3: A farmer's land is divided by a newly constructed interstate. The distances shown are in meters. Find the distance *CA* between the north border and the south border of the farmer's land.

Example 4: In the diagrams, $\angle DEG \cong \angle GEF$. Use the given side lengths to find the length of \overline{DG} in each.

Example 5: Find the length of \overline{AB} .

